Modeling Oscillatory Components:

div(BMO) and Homogeneous Besov Spaces

Triet M. Le (tle@math.ucla.edu)

Thesis Advisor: Prof. Luminita Vese

Department of Mathematics, UCLA

Outline

- 1. Variational Image Decomposition.
- 2. Motivation.
 - Mumford-Shah and Rudin-Osher-Fatemi models.
 - Y. Meyer modeling oscillatory components with

$$G = \operatorname{div}(L^{\infty}), \ F = \operatorname{div}(BMO), \ E = \dot{B}_{\infty,\infty}^{-1}.$$

- Vese-Osher's approximation of Meyer G-model.
- Osher-Sole-Vese model with \dot{H}^{-1} .
- 3. Modeling Oscillatory components with div(BMO).
- 4. Modeling oscillatory components with Besov spaces.
- 5. Numerical results.

Publications

This presentation consists of materials from these papers:

- 1. T. Le and L. Vese, *Image decomposition using total variation* and div(bmo), Multiscale Modeling and Simulation, SIAM Interdisciplinary Journal, vol.4, num. 2, pp. 390-423, June 2005.
- 2. J. Garnett, T. Le, and L. Vese, *Image decompositions using bounded variation and homogeneous Besov spaces*, UCLA CAM Report 05-57, Oct. 2005.

Variational image decomposition

Let f be periodic with the fundamental domain $\Omega = [-\frac{1}{2}, \frac{1}{2}]^2 \subset \mathbb{R}^2$. Denote L^2 for $L^2(\Omega)$, etc. A variational method for decomposing f into u+v,

- u is piecewise smooth,
- v is oscillatory or noise,

can be given by an energy minimization problem

$$\inf_{(u,v)\in X_1\times X_2} \{\mathcal{K}(u,v) = F_1(u) + \lambda F_2(v) : f = u + v\}, \text{ where }$$

- $F_1, F_2 \ge 0$ are functionals on spaces of functions or distributions X_1, X_2 , respectively. $\lambda > 0$.
- A good model for K is given by a choice of X_1 and X_2 so that $F_1(u) << F_2(u)$, and $F_1(v) >> F_2(v)$.

Mumford-Shah (1989)

$$\inf_{(u,v)\in SBV\times L^2} \left\{ \left[\int_{\Omega\setminus J_u} |\nabla u|^2 dx + \alpha \mathcal{H}^1(J_u) \right] + \lambda ||v||_{L^2}^2, \ f = u + v \right\}.$$

- $f \in L^{\infty} \subset L^2$ is split into $u \in SBV$, a piecewise-smooth function with its discontinuity set J_u composed of a union of curves, and $v = f u \in L^2$ representing noise or texture.
- $m{P}$ denotes the 1-dimensional Hausdorff measure,
- \bullet $\alpha, \lambda > 0$ are tuning parameters.

With the above notations, the first two terms compose $F_1(u)$ (non-convex), while the third term makes $F_2(v)$.

Rudin-Osher-Fatemi (1992)

$$\inf_{(u,v)\in BV\times L^2} \left\{ \int |\nabla u| \ dx + \lambda ||v||_{L^2}^2, \ f = u + v \right\},\,$$

- $\int |\nabla u| \ dx$ denotes $|u|_{BV}$, $\lambda > 0$ is a tuning parameter.
- $f \in L^2$ is split into $u \in BV$, a piecewise-smooth function and $v = f u \in L^2$ representing noise or texture.

With the above notation, $F_1(u) = |u|_{BV}$, and $F_2(v) = ||v||_{L^2}^2$.

• Loss of Intensity: Let $f=\chi_D$ be the characteristic function of a disk D centered at 0 of radius R. The minimizer (u,v) of ROF is given by:

$$u = (1 - \frac{1}{\lambda R})\chi_D, \ v = \frac{1}{\lambda R}\chi_D.$$

ROF (cont.)

ullet Replacing $\|v\|_{L^2}^2$ with $\|v\|_{L^1}$ was proposed by Cheon, Paranjpye, Vese and Osher as a Summer project, and further analysis by Chan and Esedoglu, Esedoglu and Vixie, Allard, among others.

Remark: Oscillatory components do not have small norms in L^2 or L^1 .

- To overcome these drawbacks, we have to relax the conditions on u or v=f-u. One way is to use a non-convex regularization on u (like in Mumford-Shah model), that is weaker than BV. Another way is to use weaker norms than the L^2 norm.
- ullet Here we choose to keep BV, and consider weaker norms than L^2 .

Meyer models (2001)

• Mumford-Gidas (2001) also shows that natural images are drawn from probability distributions supported by generalized functions.

In 2001, Y. Meyer proposed (weaker norms)

$$\inf_{(u,v)\in BV\times X_2} \left\{ |u|_{BV} + \lambda ||v||_{X_2}, \quad f = u + v \right\}.$$

Here X_2 is either G, F, or E.

ullet The space $G=\operatorname{div}(L^\infty)$ consists of distributions v which can be written as

$$v = \text{div}(\vec{g}), \ \vec{g} = (g_1, g_2) \in (L^{\infty})^2, \text{ with}$$

$$\|v\|_G = \inf \left\{ \left\| \sqrt{(g_1)^2 + (g_2)^2} \right\|_{L^{\infty}} : v = \operatorname{div}(\vec{g}), \ \vec{g} \in (L^{\infty})^2 \right\}.$$

Meyer (cont.)

ullet The space $F=\operatorname{div}(BMO)$ consists of distributions v which can be written as

$$v = \operatorname{div}(\vec{g}), \ \vec{g} = (g_1, g_2) \in (BMO)^2, \text{ with}$$

$$||v||_F = \inf \{ ||g_1||_{BMO} + ||g_2||_{BMO} : v = \operatorname{div}(\vec{g}), \ \vec{g} \in (BMO)^2 \}.$$

We say that f belongs to BMO, if

$$||f||_{BMO} = \sup_{Q \subset \Omega} \frac{1}{|Q|} \int_{Q} |f - f_{Q}| < \infty,$$

where $Q \subset \Omega$ is a square (with sides parallel with the axis). Here $f_Q = |Q|^{-1} \int_Q f(x,y)$ denotes the mean value of f over the square Q.

Meyer (cont.)

• We say a generalized function v belongs to the space E if it can be written as $v = \Delta g$, such that

$$\sup_{|y|>0} \frac{\|g(.+y) - 2g(.) + g(.-y)\|_{L^{\infty}}}{|y|} < \infty.$$

- Both $G = \operatorname{div}(L^{\infty})$ and $F = \operatorname{div}(BMO)$ (as defined previously) consist of first order derivatives of vector fields in L^{∞} and BMO, respectively.
- In \mathbb{R}^2 : $BV \subset L^2 \subset G \subset F \subset E$.
- Difficulty: How to solve these models in practice.

Approximating Meyer *G***-model**

Vese-Osher (2003): model oscillatory components as first order derivatives of vector fields in L^p , for $1 \le p < \infty$.

$$\inf_{u,\vec{g}} \left\{ |u|_{BV} + \mu ||f - u - \operatorname{div}(\vec{g})||_{L^2}^2 + \lambda \left\| \sqrt{g_1^2 + g_2^2} \right\|_{L^p} \right\}.$$

- $f \in L^2$ is decomposed into u+v+r, such that $u \in BV$, $v = \operatorname{div}(\vec{g}) \in \operatorname{div}(L^p)$, and $r = f u v \in L^2$ is a residual which is negligible numerically for large μ .
- As μ , $p \to \infty$, this model approaches Meyer G-model.
- Other motivating work on the G space includes Aujol et al, Aubert and Aujol, S. Osher and O. Scherzer, among others.

Osher-Sole-Vese (2003)

In 2003, S. Osher, A. Sole, and L. Vese model oscillatory components as $v=\Delta g$, where $g\in \dot{H}^1$. I.e. $v\in \dot{H}^{-1}$.

$$\inf_{u,v} \left\{ |u|_{BV} + \lambda \left\| \nabla (\Delta^{-1}v) \right\|_{L^2}^2, \ f = u + v \right\}.$$

• L. Lieu and L. Vese (2005) recently consider modeling oscillatory components as $v \in H^s$, $s \in \mathbb{R}^-$,

$$\inf_{u,v} \left\{ |u|_{BV} + \lambda \int_{\Omega} \left| (1+|\xi|^2)^{s/2} \hat{v}(\xi) \right|^2 d\xi, \ f = u + v \right\}.$$

Modeling Oscillatory components with div(BMO)

We consider a strictly convex variational problem:

$$\inf_{u,\vec{g}} \left\{ \mathcal{F}_1(u,\vec{g}) = |u|_{BV} + \mu ||f - u - \operatorname{div}(\vec{g})||_{L^2}^2 + \lambda \left[||g_1||_{BMO} + ||g_2||_{BMO} \right] \right\}$$

• A more isotropic problem: $\vec{g} = \nabla \cdot g$, i.e. $v = \Delta g$,

$$\inf_{u,g} \left\{ \mathcal{F}_2(u,g) = |u|_{BV} + \mu ||f - u - \Delta g||_{L^2}^2 + \lambda \left[||g_x||_{BMO} + ||g_y||_{BMO} \right] \right\}$$

Here, f=u+v+r, where $r\in L^2$ is a residual. As $\mu o\infty$, these models approach Meyer F-model.

Minimizing $\mathcal{F}_1(u, \vec{g})$

$$\begin{split} \mathcal{F}_{1}(u,\vec{g}) &= |u|_{BV} + \mu \|f - u - \mathsf{div}(\vec{g})\|_{L^{2}}^{2} \\ &+ \lambda \Big[\|g_{1}\|_{BMO} + \|g_{2}\|_{BMO} \Big] \\ &= \int_{\Omega} |\nabla u| + \mu \int_{\Omega} |f - u - \partial_{x}g_{1} - \partial_{y}g_{2}|^{2} \\ &+ \lambda \Big[\frac{1}{|B_{1}|} \int_{\Omega} |g_{1} - g_{1,B_{1}}| H(\phi_{1}) + \frac{1}{|B_{2}|} \int_{\Omega} |g_{2} - g_{2,B_{2}}| H(\phi_{2}) \Big], \end{split}$$

• ϕ_i is the level set of B_i , H is the heaviside function, and

•
$$g_{i,B_i} = \frac{\int_{\Omega} g_i H(\phi_i)}{\int_{\Omega} H(\phi_i)}$$
,

• B_i maximizes $||g_i||_{BMO}$.

Minimizing $\mathcal{F}_1(u, \vec{g})$ (cont.)

Keeping B_1 and B_2 fixed for one iteration, and minimizing $\mathcal{F}_1(u, \vec{g})$ with respect to its variables, we obtain

$$-div\left(\frac{\nabla u}{|\nabla u|}\right) - 2\mu(f - u - \partial_x g_1 - \partial_y g_2) = 0,$$

$$2\mu\partial_x(f-u-\partial_xg_1-\partial_yg_2)$$

$$+ \frac{\lambda H(\phi_1)}{|B_1|} \left[\frac{g_1 - g_{1,B_1}}{|g_1 - g_{1,B_1}|} - \frac{1}{|B_1|} \int_{\Omega} \frac{g_1 - g_{1,B_1}}{|g_1 - g_{1,B_1}|} H(\phi_1) \right] = 0,$$

$$2\mu\partial_y(f-u-\partial_xg_1-\partial_yg_2)$$

$$+ \frac{\lambda H(\phi_2)}{|B_2|} \left[\frac{g_2 - g_{2,B_2}}{|g_2 - g_{2,B_2}|} - \frac{1}{|B_2|} \int_{\Omega} \frac{g_2 - g_{2,B_2}}{|g_2 - g_{2,B_2}|} H(\phi_2) \right] = 0,$$

Minimizing $\mathcal{F}_2(u,g)$

$$\mathcal{F}_{2}(u,g) = \int |\nabla u| + \mu \int_{\Omega} |f - u - \Delta g|^{2}$$

$$+ \lambda \left[\frac{1}{|B_{1}|} \int_{\Omega} |g_{x} - g_{x,B_{1}}| H_{\epsilon}(\phi_{1}) \right]$$

$$+ \frac{1}{|B_{2}|} \int_{\Omega} |g_{y} - g_{y,B_{2}}| H_{\epsilon}(\phi_{2}) \right]$$

- H_{ϵ} is a smooth approximation of the Heaviside function H, and
- the unknown sets B_1 and B_2 maximize the BMO norms of $g_1=g_x$ and of $g_2=g_y$,
- ϕ_i is a level set of B_i .

Minimizing $\mathcal{F}_2(u,g)$ (cont.)

For fixed B_1 and B_2 (at one iteration), minimizing $\mathcal{F}_2(u,g)$ w.r.t. u and g, we obtain the Euler-Lagrange equations:

$$- div \left(\frac{\nabla u}{|\nabla u|} \right) - 2\mu \left(f - u - \Delta g \right) = 0,$$

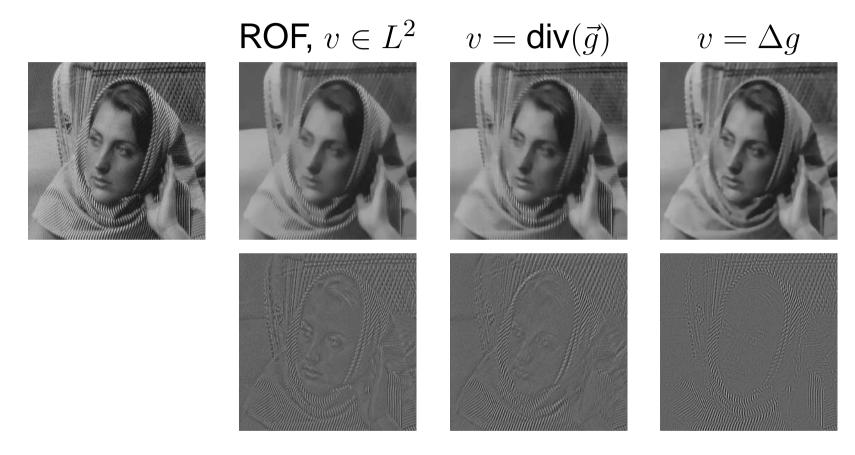
$$- 2\mu \Delta \left(f - u - \Delta g \right) - \frac{\lambda}{|B_1|} \left[\partial_x \left(\frac{g_x - g_{x,B_1}}{|g_x - g_{x,B_1}|} H_{\epsilon}(\phi_1) \right) \right]$$

$$+ \frac{\lambda}{|B_1|^2} \left(\int \frac{g_x - g_{x,B_1}}{|g_x - g_{x,B_1}|} H(\phi_1) \right) \partial_x H_{\epsilon}(\phi_1)$$

$$- \frac{\lambda}{|B_2|} \left[\partial_y \left(\frac{g_y - g_{y,B_2}}{|g_y - g_{y,B_2}|} H_{\epsilon}(\phi_2) \right) \right]$$

$$+ \frac{\lambda}{|B_2|^2} \left(\int \frac{g_y - g_{y,B_2}}{|g_y - g_{y,B_2}|} H_{\epsilon}(\phi_2) \right) \partial_y H_{\epsilon}(\phi_2) = 0,$$

Numerical results and comparisons



Remark: The case $v=\Delta g$ is more isotropic, and better capturing repeated patterns.

Homogeneous Besov spaces

Consider the Poisson and the Gaussian kernels,

$$P_t(x) = (e^{-2\pi t|\xi|})^{\vee}(x) = c_n \frac{t}{(t^2 + |x|^2)^{(n+1)/2}}.$$

$$W_t(x) = (e^{-2\pi t|\xi|^2})^{\vee}(x) = a_n t^{-n/2} e^{-\frac{\pi|x|^2}{2t}}.$$

For each $g \in L^p$. Let $w(x,t) = P_t * g(x)$, and $h(x,t) = W_t * g(x)$. We have

- $\frac{\partial^2 w}{\partial t^2} = -\Delta w$ (the wave equation).
- $\frac{\partial h}{\partial t} = \Delta h$ (the heat equation).

Besov spaces (cont.)

Let $\alpha \in \mathbb{R}$, $k, m \in \mathbb{N}_0$ s.t. $k > \alpha$ and $m > \alpha/2$, $1 \le p \le \infty$. We say $g \in \dot{B}^{\alpha}_{p,q}$, if

$$\begin{split} \|g\|_{\dot{B}^{\alpha}_{p,q}} &= \left(\int \left|t^{k-\alpha}\right| \left\|\frac{\partial^{k} P_{t}}{\partial t^{k}} * g\right\|_{L^{p}}\right|^{q} \frac{dt}{t}\right)^{1/q} \\ &\approx \left(\int \left|t^{m-\alpha/2}\right| \left\|\frac{\partial^{m} W_{t}}{\partial t^{m}} * g\right\|_{L^{p}}\right|^{q} \frac{dt}{t}\right)^{1/q} < \infty, \ q < \infty. \\ \|g\|_{\dot{B}^{\alpha}_{p,\infty}} &= \sup_{t>0} \left\{t^{k-\alpha}\left\|\frac{\partial^{k} P_{t}}{\partial t^{k}} * g\right\|_{L^{p}}\right\} \\ &\approx \sup_{t>0} \left\{t^{m-\alpha/2}\left\|\frac{\partial^{m} W_{t}}{\partial t^{m}} * g\right\|_{L^{p}}\right\} < \infty, \ q = \infty. \end{split}$$

Some properties of $\dot{B}^{\alpha}_{p,q}$

• Denote $I_s v = (-\Delta)^{s/2}(v) = ((2\pi |\xi|)^s \hat{v}(\xi))^{\vee}$, We have

 $I_s: \dot{B}^{\alpha}_{p,q} \to \dot{B}^{\alpha-s}_{p,q}$, isometrically (injectively).

• Define $\tau_{\delta} f(x) = f(\delta x), \ \delta > 0$. We have

$$\| au_\delta f\|_{L^p(\mathbb{R}^n)}=\delta^{-\frac{n}{p}}\|f\|_{L^p(\mathbb{R}^n)},$$
 and

$$\|\tau_{\delta}f\|_{\dot{B}^{\alpha}_{p,q}(\mathbb{R}^n)} = \delta^{-\frac{n}{p}+\alpha}\|f\|_{\dot{B}^{\alpha}_{p,q}(\mathbb{R}^n)}, \text{ for } \alpha < 0, \ 1 \le p, q < \infty.$$

The following embedding holds,

$$\dot{B}_{p,q_1}^{\alpha_1} \subset \dot{B}_{p,q_2}^{\alpha_2},$$

if either $\alpha_2 \leq \alpha_1$, or $\alpha_1 = \alpha_2$ and $1 \leq q_1 \leq q_2 \leq \infty$.

Modeling oscillatory components with homogeneous Besov spaces

ullet Meyer E-model corresponds to modeling

$$u \in BV$$
, and $v = \Delta g$, $g \in \dot{B}^1_{\infty,\infty}$. I.e. $v \in \dot{B}^{-1}_{\infty,\infty}$.

• (Joint work with J. Garnett and L. Vese) We consider decomposing f = u + v, such that

$$u \in BV$$
, and $v = \Delta g \in \dot{B}_{p,\infty}^{\alpha-2}$, $g \in \dot{B}_{p,\infty}^{\alpha}$, $0 < \alpha < 2, 1 \le p \le \infty$,

with the minimization problems

•
$$\inf_{u,g} \left\{ \mathcal{J}_a(u,g) = |u|_{BV} + \mu \|f - u - \Delta g\|_{L^2}^2 + \lambda \|g\|_{\dot{B}^{\alpha}_{p,\infty}} \right\}$$

Aujol & Chambolle: Meyer E-model (wavelets).

Minimizing \mathcal{J}_a , $p < \infty$

$$\mathcal{J}_{a}(u,g) = |u|_{BV} + \mu \|f - u - \Delta g\|_{L^{2}}^{2} + \lambda \|g\|_{\dot{B}_{p,\infty}^{\alpha}},$$

$$= \int_{\Omega} |\nabla u| + \mu \int_{\Omega} |f - u - \Delta g|^{2} + \lambda \sup_{t>0} \|K_{t}^{\alpha} * g\|_{L^{p}},$$

where $K_t^{\alpha} = t^{2-\alpha} \frac{\partial^2 P_t}{\partial t^2}$ or $K_t^{\alpha} = t^{1-\alpha/2} \frac{\partial W_t}{\partial t}$. In practice, we consider only a discrete set

$$\{t_i = 2.5\tau^i: \ \tau = 0.9, \ i = 1, ..., N = 150\}.$$

These t_i 's are chosen so that discretely $P_{t_1}(x)$ is a constant and $P_{t_N}(x)$ approximates the Dirac delta function.

Algorithm

- Given an initial guess (u_0, g_0) .
- Compute $\bar{t}_0 = \operatorname{argmax}_{t \in \{t_1, \dots, t_N\}} \|K^{\alpha}_t * g_0\|_{L^p}$.
- Suppose (u_n, g_n, \bar{t}_n) is known. Compute (u_{n+1}, g_{n+1}) via

$$\left(\frac{\partial \mathcal{J}_a}{\partial u} = \right), \ 0 = -\nabla \cdot \left(\frac{\nabla u}{|\nabla u|}\right) - 2\mu(f - u - \Delta g)$$

$$\left(\frac{\partial \mathcal{J}_a}{\partial g} = \right), \ 0 = -2\mu\Delta(f - u - \Delta g) + \lambda \left\| K_{\bar{t}}^{\alpha} * g \right\|_{L^p}^{1-p} K_{\bar{t}_n}^{\alpha} * \left(\left| K_{\bar{t}_n}^{\alpha} * g \right|^{p-2} K_{\bar{t}}^{\alpha} * g \right)$$

Suppose $\bar{t}_n=t_k$. Compute $\bar{t}_{n+1}=\operatorname{argmax}_{t\in\{t_{k-1},t_k,t_{k+1}\}}\|K^{\alpha}_t*g_{n+1}\|_{L^p}$. Continue...

Minimizing \mathcal{J}_a , $p = \infty$

$$\mathcal{J}_{a}(u,g) = |u|_{BV} + \mu \|f - u - \Delta g\|_{L^{2}}^{2} + \lambda \|g\|_{\dot{B}_{\infty,\infty}^{\alpha}},$$

$$= \int_{\Omega} |\nabla u| + \mu \int_{\Omega} |f - u - \Delta g|^{2} + \lambda \sup_{t>0, h \in L^{1}} \frac{\langle K_{t}^{\alpha} * g, h \rangle}{\|h\|_{L^{1}}}.$$

 Algorithm: The steps are the same as in the previous case, but now at each iteration we need to compute

$$ar{h}_n = \mathrm{argmax}_{h \in L^1} rac{\left\langle K_{ar{t}_n}^lpha * g_n, h
ight
angle}{\|h\|_{L^1}}, \; ext{via}$$

$$h_{\tau} = \frac{K_{\bar{t}}^{\alpha} * g}{\|h\|_{L^{1}}} - \frac{\langle K_{\bar{t}}^{\alpha} * g, h \rangle}{\|h\|_{L^{1}}^{2}} \frac{h}{|h|}.$$

Minimizing $\mathcal{J}_e, p < \infty$

$$\mathcal{J}_{e}(u) = |u|_{BV} + \lambda ||f - u||_{\dot{B}_{p,\infty}^{\alpha-2}}$$

$$= \int_{\Omega} |\nabla u| + \lambda \sup_{t>0} ||H_{t}^{\alpha} * (f - u)||_{L^{p}},$$

where $H_t^{\alpha}=t^{2-\alpha}P_t$ or $H_t^{\alpha}=t^{1-\alpha/2}W_t$. Suppose (u_n,\bar{t}_n) is known. Compute (u_{n+1},t_{n+1}) via

$$\bullet \left(\frac{\partial \mathcal{J}_e}{\partial u} = \right), \ u_{\tau} = \nabla \cdot \left(\frac{\nabla u}{|\nabla u|}\right) + \lambda \left\| H_{\bar{t}_n}^{\alpha} * (f - u) \right\|_{L^p}^{1-p} H_{\bar{t}_n}^{\alpha} * \left(|H_{\bar{t}_n}^{\alpha} * (f - u)|^{p-2} H_{\bar{t}_n}^{\alpha} * (f - u) \right).$$

$$\bullet \ t_{n+1} = \mathrm{argmax}_{t \in \{t_{k-1}, t_k = \bar{t}_n, t_{k+1}\}} \ \| H^{\alpha}_t * (f - u_{n+1}) \|_{L^p} \ .$$

Minimizing $\mathcal{J}_e, p = \infty$

$$\mathcal{J}_{e}(u) = |u|_{BV} + \lambda ||f - u||_{\dot{B}_{\infty,\infty}^{\alpha-2}}$$

$$= \int_{\Omega} |\nabla u| + \lambda \sup_{t>0, h \in L^{1}} \frac{\langle H_{t}^{\alpha} * (f - u), h \rangle}{||h||_{L^{1}}}.$$

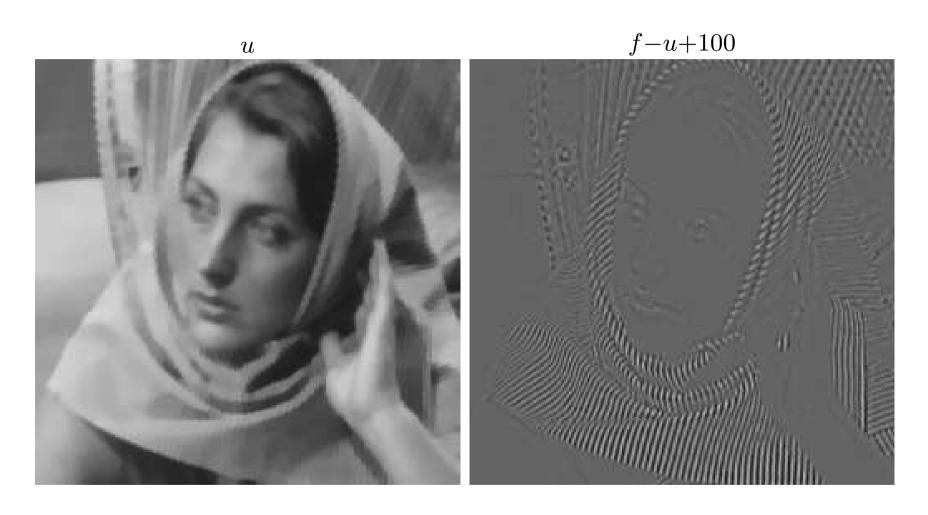
• Algorithm: The steps are the same as in the previous case, but now at each iteration we need to compute

$$\bar{h}_n = \operatorname{argmax}_{h \in L^1} \frac{\left\langle H_{\bar{t}_n}^\alpha * (f - u_n), h \right\rangle}{\|h\|_{L^1}}, \text{ via }$$

$$h_{\tau} = \frac{K_{\bar{t}}^{\alpha} * (f - u)}{\|h\|_{L^{1}}} - \frac{\langle K_{\bar{t}}^{\alpha} * (f - u), h \rangle}{\|h\|_{L^{1}}^{2}} \frac{h}{|h|}.$$

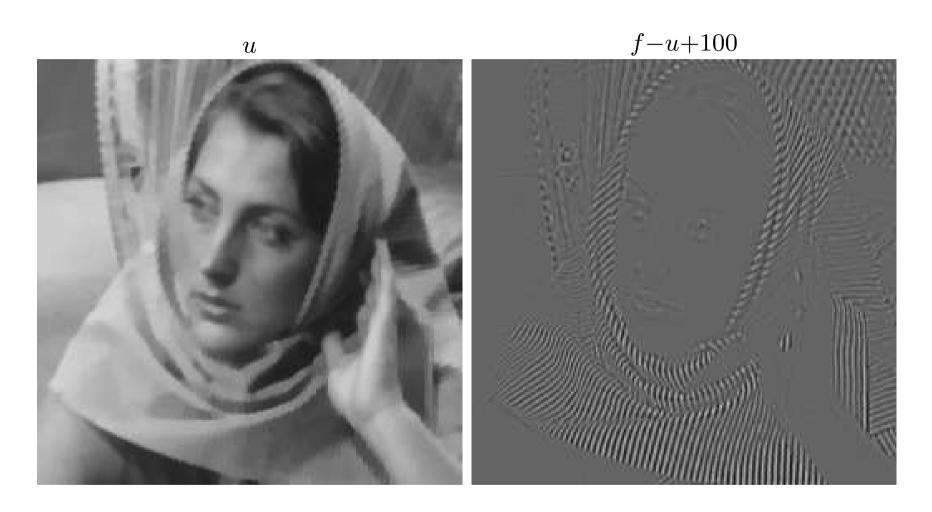
Barbara

Using \mathcal{J}_a with $u \in BV$, $v \in B_{1,\infty}^{-0.5}$



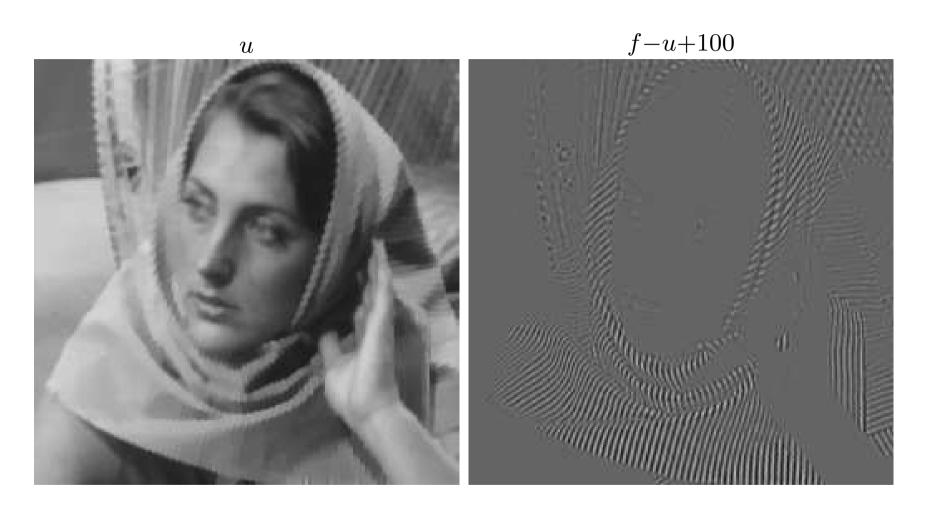
Parameters: $\alpha=1.5,\,p=1,\,\mu=1,$ and $\lambda=1e-04.$

Using \mathcal{J}_a with $u \in BV$, $v \in B_{1,\infty}^{-1}$



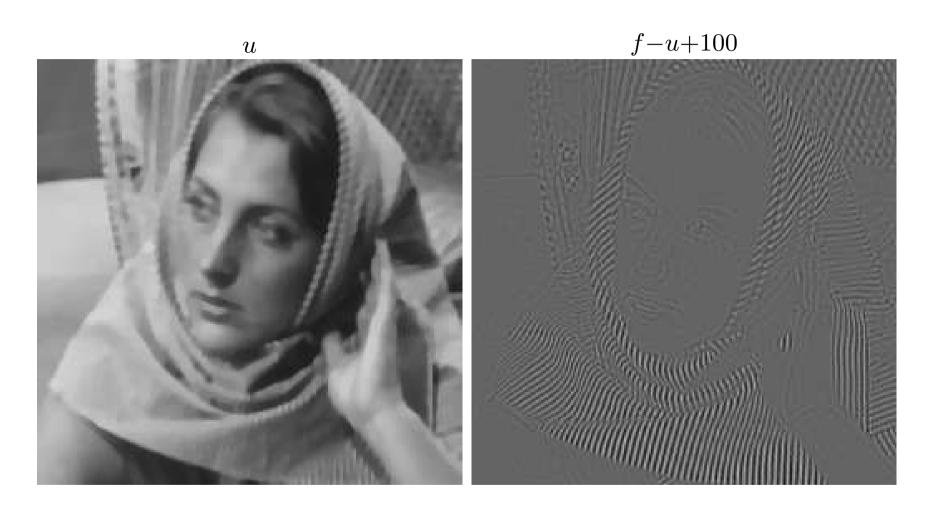
Parameters: $\alpha=1.0$, p=1, $\mu=1$, and $\lambda=3e-03$.

Using \mathcal{J}_a with $u \in BV$, $v \in B_{1,\infty}^{-1.5}$



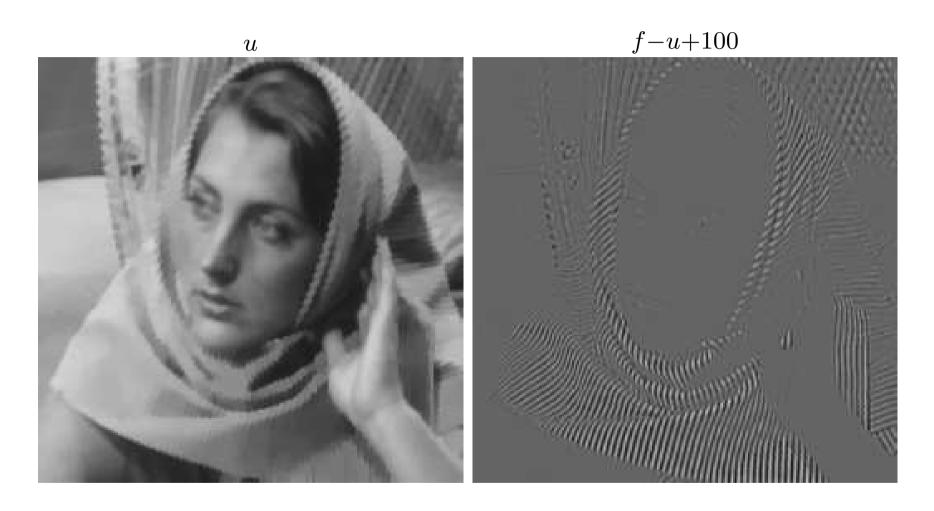
Parameters: $\alpha=0.5,\,p=1,\,\mu=1,$ and $\lambda=0.5.$

Using \mathcal{J}_a with $u \in BV$, $v \in B_{\infty,\infty}^{-1}$



Parameters: $\alpha = 1$, $p = \infty$, $\mu = 10$, and $\lambda = 1$.

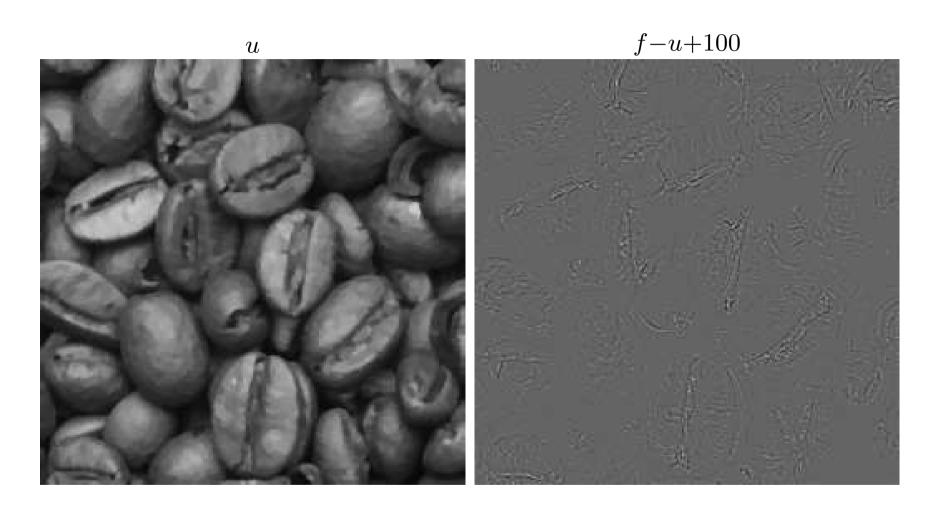
Using \mathcal{J}_e with $u \in BV$, $v \in B_{1,\infty}^{-1}$



Parameters: $\alpha = 1$, p = 1, $\lambda = 1500$.

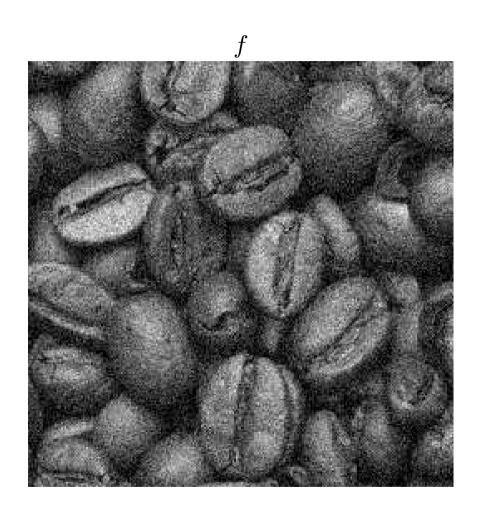
Coffee beans

Using \mathcal{J}_e with $u \in BV$, $v \in B_{1,\infty}^{-1}$

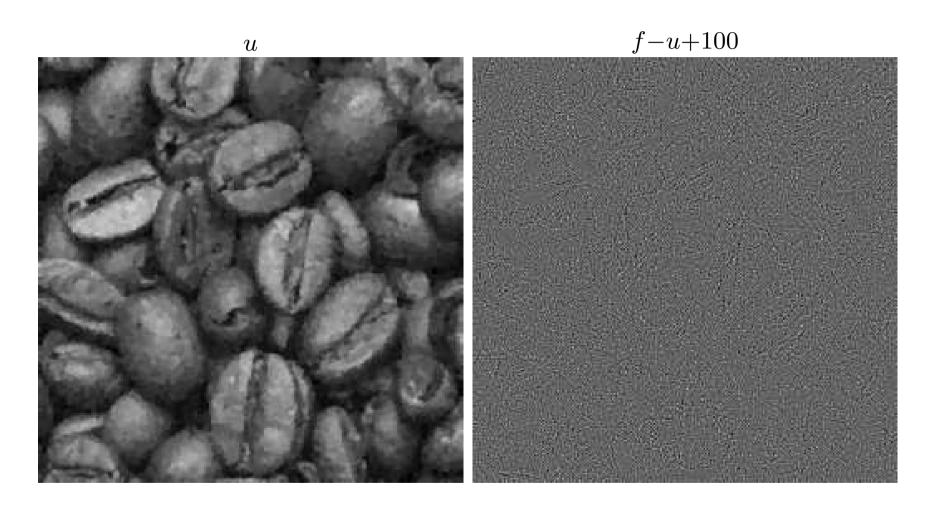


Parameters: $\alpha = 1$, p = 1, $\lambda = 1500$.

Coffee beans with additive Gaussian noise



Using \mathcal{J}_e with $u \in BV$, $v \in B_{1,\infty}^{-1}$



Parameters: $\alpha = 1$, p = 1, $\lambda = 2500$.

Stair-casing effects of total variation

The regularization term $\int |\nabla u| \ dx$ creates stair-casing effects in u in regions where f is very oscillatory. To overcome this, One could replace $\int |\nabla u| \ dx$ with $\int \varphi(\nabla u) \ dx$, where

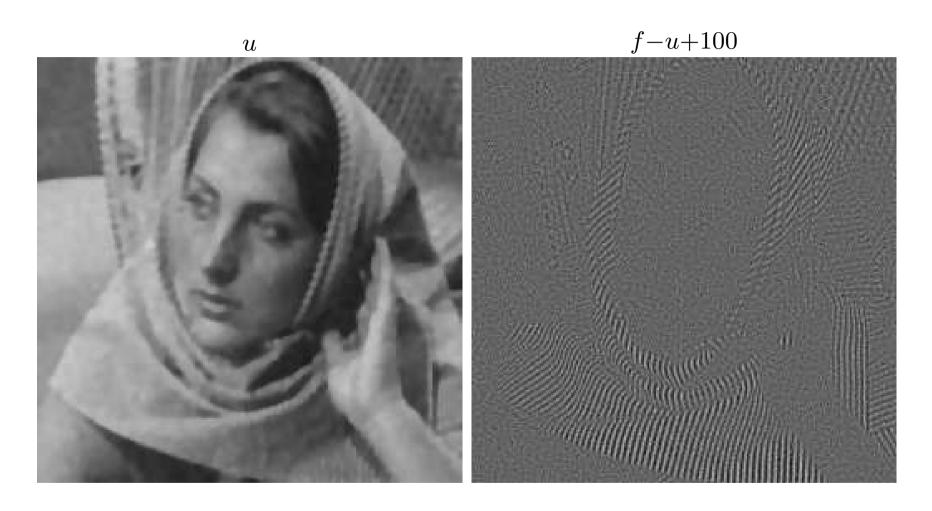
- $\varphi(z) \ge 0$ is convex (strictly convex near 0),
- lower semicontinuous, increasing and has linear growth at ∞ .

Related work:

- G. Aubert and L. Vese.
- P. Schultz, E. Bollt, R. Chartrand, s. Esedoğlu, K. Vixie.
- S. Levine.
- among others.

Barbara with Gaussian noise

Using \mathcal{J}_a with $v \in B_{2,\infty}^{-1}$



$$ullet$$
 $\varphi(\nabla u)=-eta+\sqrt{|\nabla u|^2+eta^2}$, $eta=\sqrt{10}$,

 $m{\square}$ $\alpha=1$, p=2, $\mu=10$, and $\lambda=0.01$.

Conclusion

- In these models, inteads of imposing $||v||_{L^p}$ on the oscillatory component v, we impose $||K_t * v||_{L^p}$ for some t > 0, where K_t is a smoothing kernel.
- Use p=1 for texture (repeated patterns) decomposition. M. Green also shows that texture-like natural images when being convolved with a kernel of zero mean has a laplacian probability distribution.
- Use $p = \infty$ for cases where one wants to capture more oscillations including non repeated patterns.

Thank You!

This presentation consists of materials from these papers:

- 1. T. Le and L. Vese, *Image decomposition using total variation* and div(bmo), Multiscale Modeling and Simulation, SIAM Interdisciplinary Journal, vol.4, num. 2, pp. 390-423, June 2005.
- 2. J. Garnett, T. Le, and L. Vese, *Image decompositions using bounded variation and homogeneous Besov spaces*, UCLA CAM Report 05-57, Oct. 2005.